Mathematik (RPTU in Kaiserslautern)
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
- 0631/205-2251
- 0631/205-4427
Bock, Wolfgang; Fattler, Torben; Streit, Ludwig
Stochastic Quantization for the Fractional Edwards MeasureACTA APPLICANDAE MATHEMATICAE. Bd. 151. H. 1. 2017 S. 81 - 88
Bock, Wolfgang; Capraro, Patrick
THE HAMILTONIAN PATH INTEGRAL FOR POTENTIALS OF THE ALBEVERIO HOEGH-KROHN CLASS-A WHITE NOISE APPROACHREPORTS ON MATHEMATICAL PHYSICS. Bd. 79. H. 1. 2017 S. 89 - 109
Bock, Wolfgang; da Silva, Jose Luis
Wick type SDEs driven by grey Brownian motionSTRUCTURE, FUNCTION AND DYNAMICS FROM NM TO GM. Bd. 1871. 2017
Bock, Wolfgang
Generalized Scaling Operators in White Noise Analysis and Applications to Hamiltonian Path Integrals with Quadratic ActionSTOCHASTIC AND INFINITE DIMENSIONAL ANALYSIS. 2016 S. 51 - 73
Bock, Wolfgang; da Silva, Jose Luis; Suryawan, Herry P.
Local times for multifractional Brownian motion in higher dimensions: A white noise approachINFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS. Bd. 19. H. 4. 2016
Bock, Wolfgang; Oliveira, Maria Joao; da Silva, Jose Luis et al.
Polymer measure: Varadhan's renormalization revisitedREVIEWS IN MATHEMATICAL PHYSICS. Bd. 27. H. 3. 2015
Bock, Wolfgang; Bornales, Jinky B.; Cabahug, Cresente O. et al.
Scaling Properties of Weakly Self-Avoiding Fractional Brownian Motion in One DimensionJOURNAL OF STATISTICAL PHYSICS. Bd. 161. H. 5. 2015 S. 1155 - 1162
Bock, Wolfgang; Grothaus, Martin
The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distributionINFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS. Bd. 18. H. 2. 2015
Bock, Wolfgang
HAMILTONIAN PATH INTEGRALS IN MOMENTUM SPACE REPRESENTATION VIA WHITE NOISE TECHNIQUESREPORTS ON MATHEMATICAL PHYSICS. Bd. 73. H. 1. 2014 S. 91 - 107
Bock, Wolfgang; Götz, Thomas; Grothaus, Martin et al.
Parameter Estimation from Occupation Times: A White Noise ApproachCommunications on Stochastic Analysis. Bd. 8. H. 4. Baton Rouge, LA: Louisiana State University 2014 S. 489 - 499