The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distribution
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS. Bd. 18. H. 2. 2015
Erscheinungsjahr: 2015
ISBN/ISSN: 0219-0257
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1142/S0219025715500101
Geprüft | Bibliothek |
Inhaltszusammenfassung
The concepts of Hamiltonian Feynman integrals in white noise analysis are used to realize as the first velocity-dependent potential of the Hamiltonian Feynman integrand for a charged particle in a constant magnetic field in coordinate space as a Hida distribution. For this purpose the velocity-dependent potential gives rise to a generalized Gauss kernel. Besides the propagators, the generating functionals are obtained.
Autoren
Bock, Wolfgang (Autor)
Grothaus, Martin (Autor)