Scaling Properties of Weakly Self-Avoiding Fractional Brownian Motion in One Dimension
JOURNAL OF STATISTICAL PHYSICS. Bd. 161. H. 5. 2015 S. 1155 - 1162
Erscheinungsjahr: 2015
ISBN/ISSN: 0022-4715
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1007/s10955-015-1368-9
Geprüft | Bibliothek |
Inhaltszusammenfassung
We use an off-lattice discretization of fractional Brownian motion (fBm) and a Metropolis algorithm to determine the asymptotic scaling of this discretized fBm under the influence of an excluded volume as in the Edwards and Domb-Joyce models. We find a good agreement between the Flory index describing the scaling of end-to-end length with a mean field formula proposed earlier for this class of models.
Autoren
Bock, Wolfgang (Autor)
Bornales, Jinky B. (Autor)
Cabahug, Cresente O. (Autor)
Eleuterio, Samuel (Autor)
Streit, Ludwig (Autor)