Funktionales Denken durch qualitative Experimente fördern?!
Hein, K. ; Heil, C. ; Ruwisch, S. ; Prediger, S. (Hrsg). Beiträge zum Mathematikunterricht 2021 : Vom GDM-Monat 2021 der Gesellschaft für Didaktik der Mathematik (GDM). Münster: WTM-Verlag 2021 S. 47 - 50
Erscheinungsjahr: 2021
ISBN/ISSN: 978-3-95987-183-9
Publikationstyp: Buchbeitrag (Konferenzband)
Sprache: Deutsch
Doi/URN: 10.17877/DE290R-22271
Geprüft | Bibliothek |
Inhaltszusammenfassung
Experimental approaches to functional contexts have proven to be conducive to learning (Lichti 2019). In line with the theory of instrumental genesis (Artigue 2002), the artifacts used (real materials or simulations) lead to different learning progress in terms of content (Lichti 2019): while real materials activate modeling schemata, simulations open up a dynamic view of functions. The question of how to combine both artifacts in a fruitful way is still open. Prevailing experimental approach...Experimental approaches to functional contexts have proven to be conducive to learning (Lichti 2019). In line with the theory of instrumental genesis (Artigue 2002), the artifacts used (real materials or simulations) lead to different learning progress in terms of content (Lichti 2019): while real materials activate modeling schemata, simulations open up a dynamic view of functions. The question of how to combine both artifacts in a fruitful way is still open. Prevailing experimental approaches place a numerical focus over pairs of values (Goldenberg et al. 1992) and emphasize the assignment aspect. However, Thompson and Carlson (2017) suggest that a more qualitative approach would make the difficult aspect of covariation more accessible. With this in mind, the pre-post intervention study presented here compares a numerical and a qualitative approach to functions with real materials and simulations. Initial results (N=66) already indicate an advantage of the qualitative setting.» weiterlesen» einklappen
Klassifikation
DFG Fachgebiet:
Erziehungswissenschaft und Bildungsforschung
DDC Sachgruppe:
Mathematik