Prof. Dr. Thomas Royen
FB 1 - Life Sciences and Engineering, Technische Hochschule Bingen
- 06721/409-935
Royen, Thomas
A Probability Inequality for Convolutions of MTP2-Distribution FunctionsCornell University (Hrsg). arxiv.org. Ithaca, New York. 2024 3 S.
Royen, Thomas
An integral over (0,pi) for the distribution function of a sum of independent gamma random variables and for quadratic forms of Gaussian variablesarxiv:2412.12937[math.PR]. Cornell University: arxiv.org 2024 3 S.
Royen, Thomas
On improved Gaussian correlation inequalities for symmetrical n-rectangles extended to certain multivariate gamma distributions and some further probability inequalitiesFar East Journal of Theoretical Statistics, open access. Bd. https://doi.org/10.17654/0972086325001. Allahabad, India: Pushpa Publishing House, Prayagrai, India 2024 S. 1 - 38
Edelmann, Dominic; Richards, Donald; Royen, Thomas
Product Inequalities for Multivariate Gaussian, Gamma, and Positively Upper Orthant Dependent DistributionsCornell university (Hrsg). Cornell university. 2022 12 S. 2204.06220
Royen, Thomas
Some improved Gaussian correlation inequalities for symmetrical n-rectangles extended to some multivariate gamma distributions and some further probability inequalitiesarxiv.org (Hrsg). Cornell University. 2020 25 S.
Royen, Thomas
A note on the existence of the multivariate gamma distributionarXiv:1606.04747. Cornell University. 2016
Royen, Thomas
Non-central multivariate chi-square and gamma distributionsCornell University (Hrsg). arXiv:1604.06906. Cornell University. 2016 15 S.
Royen, Thomas
Non-Central Multivariate Chi-Square and Gamma DistributionsFar East Journal of Theoretical Statistics. Bd. 52. H. 4. Allahabad, Indien: Pushpa Publishing House 2016 S. 289 - 315
Dickhaus, Thorsten; Royen, Thomas
A survey on multivariate chi-square distributions and their applications in testing multiple hypothesesStatistics. Bd. 49. H. 2. London [u.a.]: Taylor & Francis 2015 S. 427 - 454
Royen, Thomas
Some probability inequalities for multivariate gamma and normal distributionsarXiv:1507.00528[math.PR]. Cornell University. 2015 10 S.