Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Ein linearer Programmierungsansatz zur Lösung von Stopp- und Steuerungsproblemen

Berlin. 2001

Erscheinungsjahr: 2001

Publikationstyp: Diverses (Dissertation)

Sprache: Deutsch

GeprüftBibliothek

Inhaltszusammenfassung


Es wird ein Ansatz und ein Algorithmus zur Lösung von stochastischen Stoppproblemen vorgestellt, der auf einer dualen Formulierung zum klassischen Lösungsansatz für Stoppprobleme mittels Variationsungleichungen basiert. Unter bestimmten Voraussetzungen kann man für diese duale Formulierung ein äquivalentes unendlichdimensionales lineares Programm aufstellen, das die Momente des Aufenthaltsmaßes des stochastischen Prozesses bis zum Stoppzeitpunkt und die Momente der Verteilung des Prozesses zu...Es wird ein Ansatz und ein Algorithmus zur Lösung von stochastischen Stoppproblemen vorgestellt, der auf einer dualen Formulierung zum klassischen Lösungsansatz für Stoppprobleme mittels Variationsungleichungen basiert. Unter bestimmten Voraussetzungen kann man für diese duale Formulierung ein äquivalentes unendlichdimensionales lineares Programm aufstellen, das die Momente des Aufenthaltsmaßes des stochastischen Prozesses bis zum Stoppzeitpunkt und die Momente der Verteilung des Prozesses zum Zeitpunkt des Stoppens als Variablen enthält. Für dieses unendlichdimensionale Problem werden endlichdimensionale Approximationen formuliert und gelöst, wobei die Momente nur bis zu einer endlichen Ordnung berücksichtigt werden. Die Güte der numerischen Resultate hängt davon ab, wie genau der Träger des Maßes zum Stoppzeitpunkt identifiziert werden kann. Aus diesem Grund wird ein Verfeinerungsalgorithmus entwickelt, mit dem diese Identifizierung in einer Reihe von Fällen gelingt und sich sehr genaue Ergebnisse erzielen lassen. Der für Stoppprobleme entwickelte Algorithmus kann auch bei der Ermittlung von optimalen Steuerungen für stetige stochastische Prozesse angewandt werden. Für einzelne Beispiele wird gezeigt, welche Resultate dabei erzielt werden können.» weiterlesen» einklappen

Klassifikation


DFG Fachgebiet:
Mathematik

DDC Sachgruppe:
Mathematik

Verknüpfte Personen