Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Finitäre Lie-Algebren

Partner: Dipartimento di Matematica, Universita di Trento, Italien

Kurzfassung


Es sei V ein K-Vektorraum. Wir nennen eine Unteralgebra L der Lie-Algebra gl(V) finitär, wenn jedes Element in L endlichen Rang hat (als Transformation aus End(V)). Wir zeigen, dass unendlich-dimensionale, irreduzible finitäre Lie-Algebren L ähnliche Eigenschaften haben wie nicht-lineare, periodische, primitive finitär lineare Gruppen. Beispielsweise ist jede aufsteigende Unteralgebra von L selbst schon irreduzibel, und das lokal auflösbare Radikal von L ist im Falle Char K = 0 oder > 2...Es sei V ein K-Vektorraum. Wir nennen eine Unteralgebra L der Lie-Algebra gl(V) finitär, wenn jedes Element in L endlichen Rang hat (als Transformation aus End(V)). Wir zeigen, dass unendlich-dimensionale, irreduzible finitäre Lie-Algebren L ähnliche Eigenschaften haben wie nicht-lineare, periodische, primitive finitär lineare Gruppen. Beispielsweise ist jede aufsteigende Unteralgebra von L selbst schon irreduzibel, und das lokal auflösbare Radikal von L ist im Falle Char K = 0 oder > 2 trivial. Hat K Charakteristik 0 oder > 7, so ist ein Term der Kommutatorreihe sogar einfach und das einzige minimale Ideal in L.


» weiterlesen» einklappen

  • K-Vektorraum Unteralgebra Lie-Algebra gl(V) finitär unendlich-dimensionale irreduzible nicht-lineare periodische Kommutatorreihe auflösbare Radikal

Veröffentlichungen





Projektteam


Beteiligte Einrichtungen