Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Automated Motor Tic Detection: A Machine Learning Approach

Movement Disorders. Bd. 38. H. 7. Wiley 2023 S. 1327 - 1335

Erscheinungsjahr: 2023

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1002/mds.29439

Volltext über DOI/URN

Inhaltszusammenfassung


Background: Video-based tic detection and scoring is useful to independently and objectively assess tic frequency and severity in patients with Tourette syndrome. In trained raters, interrater reliability is good. However, video ratings are time-consuming and cumbersome, particularly in large-scale studies. Therefore, we developed two machine learning (ML) algorithms for automatic tic detection. Objective: The aim of this study was to evaluate the performances of state-of-the-art ML appr...Background: Video-based tic detection and scoring is useful to independently and objectively assess tic frequency and severity in patients with Tourette syndrome. In trained raters, interrater reliability is good. However, video ratings are time-consuming and cumbersome, particularly in large-scale studies. Therefore, we developed two machine learning (ML) algorithms for automatic tic detection. Objective: The aim of this study was to evaluate the performances of state-of-the-art ML approaches for automatic video-based tic detection in patients with Tourette syndrome. Methods: We used 64 videos of n = 35 patients with Tourette syndrome. The data of six subjects (15 videos with ratings) were used as a validation set for hyperparameter optimization. For the binary classification task to distinguish between tic and no-tic segments, we established two different supervised learning approaches. First, we manually extracted features based on landmarks, which served as input for a Random Forest classifier (Random Forest). Second, a fully automated deep learning approach was used, where regions of interest in video snippets were input to a convolutional neural network (deep neural network). Results: Tic detection F1 scores (and accuracy) were 82.0% (88.4%) in the Random Forest and 79.5% (88.5%) in the deep neural network approach. Conclusions: ML algorithms for automatic tic detection based on video recordings are feasible and reliable and could thus become a valuable assessment tool, for example, for objective tic measurements in clinical trials. ML algorithms might also be useful for the differential diagnosis of tics. » weiterlesen» einklappen

  • Tourette syndrome
  • machine learning
  • ticdetection
  • deep neural networks
  • Random Forest
  • Face Mesh

Autoren


Brügge, Nele Sophie (Autor)
Sallandt, Gesine Marie (Autor)
Schappert, Ronja (Autor)
Li, Frédéric (Autor)
Siekmann, Alina (Autor)
Grzegorzek, Marcin (Autor)
Bäumer, Tobias (Autor)
Beste, Christian (Autor)
Stenger, Roland (Autor)
Roessner, Veit (Autor)
Fudickar, Sebastian (Autor)
Handels, Heinz (Autor)
Münchau, Alexander (Autor)

Klassifikation


DFG Fachgebiet:
Psychologie

DDC Sachgruppe:
Psychologie

Verknüpfte Personen


Christian Frings

Beteiligte Einrichtungen