Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Analyzing Geospatial Key Factors and Predicting Bike Activity in Hamburg

Kubicek, Petr u. a. (Hrsg). Geoinformatics and Data Analysis. France: Springer Cham 2022 S. 13 - 24 (Lecture Notes on Data Engineering and Communications Technologies ; 143)

Erscheinungsjahr: 2022

ISBN/ISSN: 978-3-031-08017-3 ; 978-3-031-08016-6

Publikationstyp: Buchbeitrag

Sprache: Englisch

Doi/URN: 10.1007/978-3-031-08017-3_2

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


This paper addresses the determination of geospatial key factors, which are relevant for bike sharing stations in the city of Hamburg. They serve as an application case for limited service offers in smart cities. Our approach combines real-world empirical data with open-source data on points of interest for the determination. We apply linear regression methods in combination with an established metric for calculating the geospatial impact. On top of the determination of the geospatial key fac...This paper addresses the determination of geospatial key factors, which are relevant for bike sharing stations in the city of Hamburg. They serve as an application case for limited service offers in smart cities. Our approach combines real-world empirical data with open-source data on points of interest for the determination. We apply linear regression methods in combination with an established metric for calculating the geospatial impact. On top of the determination of the geospatial key factors, our paper seeks for machine learning based approaches to predict the bike sharing activity. In our results of the analysis, we identify correlations between bike activity and geospatial factors. Moreover, our neural network provides a solid basis for predicting the activity of bike stations.» weiterlesen» einklappen

  • Geospatial analysis
  • Predictive analysis
  • Bike sharing system
  • Urban analysis

Klassifikation


DDC Sachgruppe:
Informatik

Verbundene Forschungsprojekte


Verknüpfte Personen