Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Kinematic splitting algorithm for fluid–structure interaction in hemodynamics

Computer Methods in Applied Mechanics and Engineering. Bd. 265. Elsevier BV 2013 S. 83 - 106

Erscheinungsjahr: 2013

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1016/j.cma.2013.05.025

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


In this paper we study a kinematic splitting algorithm for fluid–structure interaction problems. This algorithm belongs to the class of loosely-coupled fluid–structure interaction schemes. We will present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Fluid flow is described by the conservation laws with nonlinearities in convective and diffusive terms. For simplicity of presentation the structure is modelled by...In this paper we study a kinematic splitting algorithm for fluid–structure interaction problems. This algorithm belongs to the class of loosely-coupled fluid–structure interaction schemes. We will present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Fluid flow is described by the conservation laws with nonlinearities in convective and diffusive terms. For simplicity of presentation the structure is modelled by the generalized string equation, but the results presented in the paper may be generalized to more complex structure models. The arbitrary Lagrangian–Eulerian approach is used in order to take into account moving computational domain. Numerical experiments including numerical error analysis and comparison of hemodynamic parameters for Newtonian and non-Newtonian fluids demonstrate reliability of the proposed scheme.» weiterlesen» einklappen

  • Highlights •Interaction between non-Newtonian model for blood and viscoelastic vessel. •Stability analysis of the second order kinematic splitting without any subiterations. •Explicit description of the mesh movement with geometric conservation law. •Generalization to three-dimensional fluid–structure interaction problems. •Experimental analysis of hemodynamical wall parameters WSS and OSI.

Autoren


Lukáčová-Medvid’ová, M. (Autor)
Rusnáková, G. (Autor)
Hundertmark-Zaušková, A. (Autor)

Klassifikation


DFG Fachgebiet:
Mathematik

DDC Sachgruppe:
Mathematik

Verbundene Forschungsprojekte


Verknüpfte Personen