Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Computing cyclic invariants for molecular graphs

Networks. Bd. 70. H. 2. Wiley 2017 S. 116 - 131

Erscheinungsjahr: 2017

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1002/net.21757

Volltext über DOI/URN

Inhaltszusammenfassung


Ring structures in molecules belong to the most impor- tant substructures for many applications in Computa- tional Chemistry. One typical task is to find an implicit description of the ring structure of a molecule. We present efficient algorithms for cyclic graph invariants that may serve as molecular descriptors to accelerate database searches. Another task is to construct a well- defined set of rings of a molecular graph explicitly. We give a new algorithm for computing the set of rele- van...Ring structures in molecules belong to the most impor- tant substructures for many applications in Computa- tional Chemistry. One typical task is to find an implicit description of the ring structure of a molecule. We present efficient algorithms for cyclic graph invariants that may serve as molecular descriptors to accelerate database searches. Another task is to construct a well- defined set of rings of a molecular graph explicitly. We give a new algorithm for computing the set of rele- vant cycles of a graph.» weiterlesen» einklappen

  • chemical graphs
  • invariants
  • minimum cycle basis
  • efficient algorithms
  • relevant cycles
  • essential cycles

Autoren


Berger, Franziska (Autor)
Gritzmann, Peter (Autor)

Klassifikation


DFG Fachgebiet:
Mathematik

DDC Sachgruppe:
Mathematik

Verknüpfte Personen


Sven de Vries

Beteiligte Einrichtungen