Ecophysiological and life-history adaptations of Gammarus balcanicus (Schaferna, 1922) in a sinking-cave stream from Western Carpathians (Romania)
ZOOLOGY. Bd. 139. 2020
Erscheinungsjahr: 2020
ISBN/ISSN: 0944-2006
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1016/j.zool.2020.125754
Geprüft | Bibliothek |
Inhaltszusammenfassung
Freshwater gammarids are known to colonise occasionally sinking-cave streams, providing contrasting morphological, life-history and ecophysiological adaptations compared to their surface conspecifics. In this study, a subterranean and a surface population of the species Gammarus balcanicus was surveyed for one year in a sinking-cave stream from the Western Carpathians (Romania). The results showed that the cave-dwelling population comprised individuals that were significantly larger compared ...Freshwater gammarids are known to colonise occasionally sinking-cave streams, providing contrasting morphological, life-history and ecophysiological adaptations compared to their surface conspecifics. In this study, a subterranean and a surface population of the species Gammarus balcanicus was surveyed for one year in a sinking-cave stream from the Western Carpathians (Romania). The results showed that the cave-dwelling population comprised individuals that were significantly larger compared to their surface conspecifics, had larger body-size at sexual maturity and that the females produced fewer, but larger eggs, compared to the population situated outside the cave. The trophic position and the omnivory were significantly higher for the cave-dwelling compared to surface population and the elemental imbalance for C:P molar ratios lower, but similar for C:N. However, the subterranean population did not present troglomorphic characters or longer lifespan as known for other cave-surface paired crustaceans. This, together with the rather extensive hydrological connection of the habitats, suggests active gene-flow between populations and similar response to seasonality for body-size distributions, indicating that the observed ecophysiological and life-history differences are rather the consequence of phenotypic plasticity than the result of genetic adaptation. » weiterlesen» einklappen