Combined effect of UV-irradiation and TiO(2)-nanoparticles on the predator-prey interaction of gammarids and mayfly nymphs
Environmental Pollution. Bd. 186. 2014 S. 136 - 140
Erscheinungsjahr: 2014
Publikationstyp: Zeitschriftenaufsatz
Geprüft | Bibliothek |
Inhaltszusammenfassung
Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO2; <100 nm) on the interaction between the prey Ephemerella ignita (Ephemeroptera) and the predator Gammarus fossarum (Amphipoda) over 96 h considering UV-irradiation at field relev...Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO2; <100 nm) on the interaction between the prey Ephemerella ignita (Ephemeroptera) and the predator Gammarus fossarum (Amphipoda) over 96 h considering UV-irradiation at field relevant levels (approximately 11.4 W/m(2)) as an additional environmental factor (n = 16). At the same time, gammarid's consumption of an alternative food source, i.e. leaf discs, was assessed. All endpoints covered were not affected by nTiO2 alone, while the combination of nTiO2 and UV caused a reduction in gammarid's predation (68These effects were most likely triggered by the UV-induced formation of reactive oxygen species by nTiO2. The present study, hence, highlights the importance to cover UV-irradiation during the risk assessment of nanoparticles.» weiterlesen» einklappen