Regulatory FOCUS Surface Water Models Fail to Predict Insecticide Concentrations in the Field
ENVIRONMENTAL SCIENCE & TECHNOLOGY. Bd. 46. H. 15. 2012 S. 8397 - 8404
Erscheinungsjahr: 2012
ISBN/ISSN: 0013-936X
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1021/es301649w
Geprüft | Bibliothek |
Inhaltszusammenfassung
The FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) exposure models are used to predict the frequency and magnitude of pesticide surface water concentrations within the European regulatory risk assessment. The predictions are based on realistic worst-case assumptions that result in predicted environmental concentrations (PEC). Here, we compared for the first time a larger data set of 122 measured field concentrations (MFC) of agricultural insecticides extracted from...The FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) exposure models are used to predict the frequency and magnitude of pesticide surface water concentrations within the European regulatory risk assessment. The predictions are based on realistic worst-case assumptions that result in predicted environmental concentrations (PEC). Here, we compared for the first time a larger data set of 122 measured field concentrations (MFC) of agricultural insecticides extracted from 22 field studies to respective PECs by using FOCUS steps 1-4. While FOCUS step 1 and 2 PECs generally overpredicted the MFCs, 23% of step 3 and 31% of step 4 standard PECs were exceeded by surface water MFCs, which questions the protectiveness of the FOCUS exposure assessment. Using realistic input parameters, step 3 simulations underpredicted MFCs in surface water and sediment by 43% and 78%, respectively, which indicate that a higher degree of realism even reduces the protectiveness of model results. The ratios between PEC and MFC in surface water were significantly lower for pyrethroids than for organophosphorus or organochlorine insecticides, which suggests that the FOCUS predictions are less protective for hydrophobic insecticides. In conclusion, the FOCUS modeling approach is not protective for insecticide concentrations in the field. » weiterlesen» einklappen