Two stressors and a community - Effects of hydrological disturbance and a toxicant on freshwater zooplankton
AQUATIC TOXICOLOGY. Bd. 127. 2013 S. 9 - 20
Erscheinungsjahr: 2013
ISBN/ISSN: 0166-445X
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1016/j.aquatox.2012.09.003
Geprüft | Bibliothek |
Inhaltszusammenfassung
Climate change models predict an increase in the frequency and intensity of extreme fluctuations in water level in aquatic habitats. Therefore, it is necessary to understand the combined effects of hydrological fluctuations and toxicants on aquatic biological communities. We investigated the individual and combined effects of the insecticide esfenvalerate and recurring fluctuations in water level on zooplankton communities in a system of 55 outdoor pond microcosms. The communities were expose...Climate change models predict an increase in the frequency and intensity of extreme fluctuations in water level in aquatic habitats. Therefore, it is necessary to understand the combined effects of hydrological fluctuations and toxicants on aquatic biological communities. We investigated the individual and combined effects of the insecticide esfenvalerate and recurring fluctuations in water level on zooplankton communities in a system of 55 outdoor pond microcosms. The communities were exposed to esfenvalerate contamination as a single pulse (at 0.03, 0.3, or 3 mu g/L) and gradual removal of water and its subsequent replacement over three cycles and monitored until 84 days after contamination. The results showed that the sensitivities of the community and its constituent populations to the toxicant were increased by the hydrological stress. Specifically, for both the community structure and abundance of Daphnia spp. the lowest-observed-effect concentrations (LOEC) were 0.03 and 03 mu g/L for the series with fluctuating and constant water levels, respectively. Despite these differences in sensitivity, the interactive effects of the two stressors were found to be additive for both the community structure and the abundance of the most affected species. Presumably, it was not possible to detect synergism due to the strong individual effects of the water level fluctuations. Recovery times in the series exposed to the highest pesticide concentration were 64 and 55 days under fluctuating and constant water level regimes, respectively. Competition and water quality are suggested to be the major factors that underlie the observed effects of fluctuations in the water level. For the ecological risk assessment of toxicants, the present results suggest that (i) community sensitivity may vary substantially, depending on the environmental context, and (ii) this variability can be assessed experimentally to derive safety factors (coefficients used to avoid unexpected effects and define safe concentrations of toxicants) based on empirical findings. This contrasts with the current approach where such factors are usually defined arbitrarily. (c) 2012 Elsevier B.V. All rights reserved. » weiterlesen» einklappen