Measurement of very forward energy and particle production at midrapidity in pp and p-Pb collisions at the LHC
arXiv.org (Hrsg). Cornell University: arXiv 2021 23 S. 2107.10757
Erscheinungsjahr: 2021
Publikationstyp: Diverses (Forschungsbericht)
Sprache: Englisch
Geprüft | Bibliothek |
Inhaltszusammenfassung
The very forward energy is a powerful tool for characterising the proton fragmentation in pp and p-Pb collisions and, studied in correlation with particle production at midrapidity, provides direct insightsinto the initial stages and the subsequent evolution of the collision. Furthermore, the correlation between the forward energy and the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which a...The very forward energy is a powerful tool for characterising the proton fragmentation in pp and p-Pb collisions and, studied in correlation with particle production at midrapidity, provides direct insightsinto the initial stages and the subsequent evolution of the collision. Furthermore, the correlation between the forward energy and the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interaction. Results about the very forward energy, measured by the ALICE zero degree calorimeters (ZDC), and its dependence on the activity measured at midrapidity in pp collisions at s√=13 TeV and in p-Pb collisions at sNN‾‾‾‾√=8.16 TeV are presented and discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used. » weiterlesen» einklappen
Klassifikation
DDC Sachgruppe:
Physik