Inclusive quarkonium production in pp collisions at s√=5.02 TeV
arXiv.org (Hrsg). Cornell University: arXiv 2021 34 S. 2109.15240
Erscheinungsjahr: 2021
Publikationstyp: Diverses (Forschungsbericht)
Sprache: Englisch
Geprüft | Bibliothek |
Inhaltszusammenfassung
This article reports on the inclusive production cross section of several quarkonium states, J/ψ, ψ(2S), Υ(1S), Υ(2S), and Υ(3S), measured with the ALICE detector at the LHC, in \pp collisions at s√=5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 μb, σψ(2S)=0.87±0.06±0.10 μb, σΥ(1S)=45.5±3.9±3.5 nb, σΥ(2S)=22.4±3.2±2.7 nb, and σΥ(3S)=4.9±2.2±1.0 nb, where the fi...This article reports on the inclusive production cross section of several quarkonium states, J/ψ, ψ(2S), Υ(1S), Υ(2S), and Υ(3S), measured with the ALICE detector at the LHC, in \pp collisions at s√=5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 μb, σψ(2S)=0.87±0.06±0.10 μb, σΥ(1S)=45.5±3.9±3.5 nb, σΥ(2S)=22.4±3.2±2.7 nb, and σΥ(3S)=4.9±2.2±1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pT) and rapidity (y) differential cross sections for J/ψ, ψ(2S), Υ(1S), and the ψ(2S)-to-J/ψ cross section ratios are presented. For the first time, the cross sections of the three Υ states, as well as the ψ(2S) one as a function of pT and y, are measured at s√=5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ pT reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s√=2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models. » weiterlesen» einklappen
Klassifikation
DDC Sachgruppe:
Physik