Univ.-Prof. Dr. rer. nat. Rainer Tichatschke
Mathematik, Universität Trier
- 0651/201-3481
- 0651/201-3952
Tichatschke, R.; Kaplan, A.
Weak error tolerance criterion in generalized proximal methods2002 S. 1 - 10
Tichatschke, R.; Kaplan, A.
Interior proximal method for variational inequalities: Case of non-paramonotone operators2001 S. pp. 15
Tichatschke, R.; Kaplan, A.
Proximal interior point methods for convex semi-infinite programmingOptimization Methods and Software. Bd. Optimization Methods and Software. Gordon and Breach 2001 S. 87 - 119
Tichatschke, R.; Kaplan, A.; Gilbert, G. et al.
Proximal methods for variational inequalities with set-valued monotone operatorsGilbert, G.; Panagiotopoulos, P.D.; Pardalos, P. (Hrsg). From Convexity to Nonconvexity. Kluwer Acad. Publ. 2001 S. 345 - 361
Kaplan, A.; Tichatschke, R.
Proximal Point Approach and Approximation of Variational InequalitiesSIAM journal on control and optimization. a publication of the Society for Industrial and Applied Mathematics. Bd. 39. H. 4. Philadelphia, Pa.: Soc. 2001 S. 1136 - 1159
Tichatschke, R.; Hettich, R.; Kaplan, A. et al.
Semi-infinite Programming - Methods for nonlinear problemsFloudas, C.A.; Pardalos, P.M. (Hrsg). Encyclopedia of Optimization. 2001 S. 112 - 117
Kaplan, A.; Tichatschke, R.
Auxiliary Problem Principle and Proximal Point MethodsJournal of global optimization. an international journal dealing with theoretical and computational aspects of seeking global optima and their applications in science, management and engineering. Bd. 17. H. 1. Dordrecht: Kluwer 2000 S. 201 - 224
Tichatschke, R.; Kaplan, A.; Thera, M.
Auxiliary problem principle and the approximation of variational inequalities with non-symmetric multi-valued operatorsCanadian Math. Soc. Conference Proc. Series. Bd. Canadian Math. Soc. Conference Proc. Series. 2000 S. 185 - 209
Théra, Michel A.; Tichatschke, Rainer
Ill-posed variational problems and regularization techniquesBerlin [u.a.]: Springer 1999 0 S. (Lecture notes in economics and mathematical systems ; 477)
Kaplan, A.; Tichatschke, R.
Proximal Interior Point Approach in Convex Programming (III-Posed Problems)Optimization. a journal of mathematical programming and operations research. Bd. 45. H. 1. Reading [u.a]: Taylor & Francis 1999 S. 117 - 148