Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen
Rainer Tichatschke

Univ.-Prof. Dr. rer. nat. Rainer Tichatschke

Mathematik, Universität Trier

Universitätsring 15, Raum: E 20

  • 0651/201-3481
  • 0651/201-3952
Publikationen
Ergebnisse pro Seite:  10

Tichatschke, R.; Kaplan, A.

Weak error tolerance criterion in generalized proximal methods

2002 S. 1 - 10



Tichatschke, R.; Kaplan, A.

Proximal interior point methods for convex semi-infinite programming

Optimization Methods and Software. Bd. Optimization Methods and Software. Gordon and Breach 2001 S. 87 - 119


Tichatschke, R.; Kaplan, A.; Gilbert, G. et al.

Proximal methods for variational inequalities with set-valued monotone operators

Gilbert, G.; Panagiotopoulos, P.D.; Pardalos, P. (Hrsg). From Convexity to Nonconvexity. Kluwer Acad. Publ. 2001 S. 345 - 361


Kaplan, A.; Tichatschke, R.

Proximal Point Approach and Approximation of Variational Inequalities

SIAM journal on control and optimization. a publication of the Society for Industrial and Applied Mathematics. Bd. 39. H. 4. Philadelphia, Pa.: Soc. 2001 S. 1136 - 1159


Tichatschke, R.; Hettich, R.; Kaplan, A. et al.

Semi-infinite Programming - Methods for nonlinear problems

Floudas, C.A.; Pardalos, P.M. (Hrsg). Encyclopedia of Optimization. 2001 S. 112 - 117


Kaplan, A.; Tichatschke, R.

Auxiliary Problem Principle and Proximal Point Methods

Journal of global optimization. an international journal dealing with theoretical and computational aspects of seeking global optima and their applications in science, management and engineering. Bd. 17. H. 1. Dordrecht: Kluwer 2000 S. 201 - 224


Tichatschke, R.; Kaplan, A.; Thera, M.

Auxiliary problem principle and the approximation of variational inequalities with non-symmetric multi-valued operators

Canadian Math. Soc. Conference Proc. Series. Bd. Canadian Math. Soc. Conference Proc. Series. 2000 S. 185 - 209


Théra, Michel A.; Tichatschke, Rainer

Ill-posed variational problems and regularization techniques

Berlin [u.a.]: Springer 1999 0 S. (Lecture notes in economics and mathematical systems ; 477)


Kaplan, A.; Tichatschke, R.

Proximal Interior Point Approach in Convex Programming (III-Posed Problems)

Optimization. a journal of mathematical programming and operations research. Bd. 45. H. 1. Reading [u.a]: Taylor & Francis 1999 S. 117 - 148