Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Investigating particle track topology for range telescopes in particle radiography using convolutional neural networks

Acta Oncologica. Bd. 60. H. 11. Taylor & Francis 2021 S. 1413 - 1418

Erscheinungsjahr: 2021

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1080/0284186x.2021.1949037

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Background Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the...Background Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the image quality. Material and methods The CNN was trained by simulation and reconstruction of tens of millions of proton and helium tracks. The CNN filter was then compared to simple energy loss threshold methods using the Area Under the Receiver Operating Characteristics curve (AUROC), and by comparing the image quality and Water Equivalent Path Length (WEPL) error of proton and helium radiographs filtered with the same methods. Results The CNN method led to a considerable improvement of the AUROC, from 74.3% to 97.5% with protons and from 94.2% to 99.5% with helium. The CNN filtering reduced the WEPL error in the helium radiograph from 1.03 mm to 0.93 mm while no improvement was seen in the CNN filtered pRads. Conclusion The CNN improved the filtering of proton and helium tracks. Only in the helium radiograph did this lead to improved image quality.» weiterlesen» einklappen

  • Proton computed tomography
  • machine learning
  • Monte Carlo simulation
  • convolutional neural network
  • secondary particles

Autoren


Pettersen, Helge Egil Seime (Autor)
Alme, Johan (Autor)
Barnaföldi, Gergely Gábor (Autor)
Borshchov, Vyacheslav (Autor)
van den Brink, Anthony (Autor)
Chaar, Mamdouh (Autor)
Eikeland, Viljar (Autor)
Feofilov, Grigory (Autor)
Garth, Christoph (Autor)
Gauger, Nicolas R. (Autor)
Genov, Georgi (Autor)
Grøttvik, Ola (Autor)
Helstrup, Håvard (Autor)
Igolkin, Sergey (Autor)
Kobdaj, Chinorat (Autor)
Leonhardt, Viktor (Autor)
Mehendale, Shruti (Autor)
Odland, Odd Harald (Autor)
Papp, Gábor (Autor)
Peitzmann, Thomas (Autor)
Piersimoni, Pierluigi (Autor)
Protsenko, Maksym (Autor)
Rehman, Attiq Ur (Autor)
Richter, Matthias (Autor)
Santana, Joshua (Autor)
Seco, Joao (Autor)
Songmoolnak, Arnon (Autor)
Sølie, Jarle Rambo (Autor)
Tambave, Ganesh (Autor)
Tymchuk, Ihor (Autor)
Ullaland, Kjetil (Autor)
Varga-Kofarago, Monika (Autor)
Volz, Lennart (Autor)
Wagner, Boris (Autor)
Xiao, RenZheng (Autor)
Yang, Shiming (Autor)
Yokoyama, Hiroki (Autor)
Röhrich, Dieter (Autor)

Klassifikation


DFG Fachgebiet:
Informatik

DDC Sachgruppe:
Informatik

Verbundene Forschungsprojekte


Verknüpfte Personen


Steffen Wendzel