Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Publish and Enrich Geospatial Data as Linked Open Data

Decker, Stefan; Domínguez Mayo, Francisco; Marchiori, Massimo; Filipe, Joaquim (Hrsg). Proceedings of the 18th International Conference on Web Information Systems and Technologies. Valletta. 2022 S. 314 - 319 (WEIST Proceedings)

Erscheinungsjahr: 2022

ISBN/ISSN: 978-989-758-613-2/2184-3252

Publikationstyp: Buchbeitrag (Konferenzbeitrag)

Sprache: Englisch

Doi/URN: 10.5220/0011550600003318

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


The rapid growth of geospatial data (at least 20% every year) makes spatial data increasingly heterogeneous. With the emergence of Semantic Web technologies, more and more approaches are trying to group these data in knowledge graphs, allowing to link data together and to facilitate their sharing, use and maintenance. These approaches face the problem of homogenisation of these data which are not unified in the structure of the data on the one hand and on the other hand have a vocabulary that...The rapid growth of geospatial data (at least 20% every year) makes spatial data increasingly heterogeneous. With the emergence of Semantic Web technologies, more and more approaches are trying to group these data in knowledge graphs, allowing to link data together and to facilitate their sharing, use and maintenance. These approaches face the problem of homogenisation of these data which are not unified in the structure of the data on the one hand and on the other hand have a vocabulary that varies greatly depending on the application domain for which the data are dedicated and the language in which they are described. In order to solve this problem of homogenisation, we present in this paper the foundations of a framework allowing to group efficiently heterogeneous spatial data in a knowledge base. This knowledge base is based on an ontology linked to Schema.org and DCAT-AP, and provides a data structure compatible with GeoSPARQL. This framework allows the integration of geospatial data independently of their original language by translating them using Neural Machine Translation.» weiterlesen» einklappen

  • Semantic Interpretation
  • Linked Open Data
  • SPARQL
  • Semantic Web
  • Neural Machine Translation

Autoren


Ponciano, Claire (Autor)
Würriehausen, Falk (Autor)

Klassifikation


DFG Fachgebiet:
Geographie

DDC Sachgruppe:
Informatik

Verbundene Forschungsprojekte


Verknüpfte Personen



Beteiligte Einrichtungen