Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Measuring Traits and States in Public Opinion Research: A Latent State-Trait Analysis of Political Efficacy

International Journal of Public Opinion Research. Bd. 26. H. 2. Oxford University Press (OUP) 2014 S. 202 - 223

Erscheinungsjahr: 2014

ISBN/ISSN: 0954-2892

Publikationstyp: Zeitschriftenaufsatz

Sprache: Deutsch

Doi/URN: 10.1093/ijpor/edu002

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Latent state–trait theory (LSTT) considers the fact that measurement does not take place in a situational vacuum. LSTT decomposes any observed variable into a latent state component and a measurement error component, and any latent state into a latent trait component and a latent state residual representing situational influence and/or interactional influences. Furthermore, it provides more precise reliability estimates than common coefficients. This article introduces the basic concepts of L...Latent state–trait theory (LSTT) considers the fact that measurement does not take place in a situational vacuum. LSTT decomposes any observed variable into a latent state component and a measurement error component, and any latent state into a latent trait component and a latent state residual representing situational influence and/or interactional influences. Furthermore, it provides more precise reliability estimates than common coefficients. This article introduces the basic concepts of LSTT, discusses its usefulness for public opinion research, and applies LST models to panel data on political efficacy from the 2009 German Longitudinal Election Study. The findings show that internal efficacy is a rather trait-like disposition and external efficacy is significantly due to situational and/or interactional influences.» weiterlesen» einklappen

  • trait
  • measuring
  • analysis
  • politics

Autoren


Schneider, F. M. (Autor)
Alings, D. (Autor)
Schmitt, M. (Autor)

Klassifikation


DFG Fachgebiet:
Sozialwissenschaften

DDC Sachgruppe:
Psychologie

Verknüpfte Personen