Simultaneous analysis of ochratoxin A and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin.
J Chromatography B. Bd. 878. H. 27. 2010 S. 2623 - 2629
Erscheinungsjahr: 2010
Publikationstyp: Zeitschriftenaufsatz
Sprache: Englisch
Doi/URN: 10.1016/j.jchromb.2009.11.044
Geprüft | Bibliothek |
Inhaltszusammenfassung
Ochratoxin A (OTA) is a frequent mycotoxin contaminant found worldwide in foods and feedstuffs. Biomonitoring has been used to assess internal OTA exposure resulting from dietary intake and from other sources. Mycotoxin levels in blood and/or urine provide good estimates of past and recent exposure since OTA binds to serum proteins and is also partly excreted via the kidney. But, measuring OTA alone does not reflect its biotransformation. In light of scarce data on its metabolites in humans, ...Ochratoxin A (OTA) is a frequent mycotoxin contaminant found worldwide in foods and feedstuffs. Biomonitoring has been used to assess internal OTA exposure resulting from dietary intake and from other sources. Mycotoxin levels in blood and/or urine provide good estimates of past and recent exposure since OTA binds to serum proteins and is also partly excreted via the kidney. But, measuring OTA alone does not reflect its biotransformation. In light of scarce data on its metabolites in humans, it was the aim of this study to develop a method that allows analysis of OTA and its detoxication product ochratoxin alpha (OTα) in urine and in blood plasma. The method involves enzymatic hydrolysis of conjugates, liquid–liquid extraction, and analysis of sample extracts by liquid chromatography with fluorescence detection. Application of the validated method in a pilot study with 13 volunteers revealed the presence of OTA and OTα in all samples (limit of quantification: 0.05 ng/mL in urine, and 0.1 ng/mL in plasma). In line with negative findings of others, an OTA glucuronide was not detected, neither in urine nor in plasma. By contrast, conjugates of OTα (glucuronide and/or sulfate) are major products in these samples. This was confirmed by mass spectrometry detection. As OTα represents a large fraction of ingested mycotoxin, we propose to include analyses of this metabolite in future biomonitoring studies, also in light of the observed variations for urine OTα-levels that suggest different interindividual abilities for OTA-detoxification in humans.» weiterlesen» einklappen
Autoren
Klassifikation
DDC Sachgruppe:
Naturwissenschaften