Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Semantic user profiling techniques for personalised multimedia recommendation

Multimedia Systems. Bd. 16. H. 4-5. Berlin: Springer 2010 S. 255 - 274

Erscheinungsjahr: 2010

ISBN/ISSN: 1432-1882

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1007/s00530-010-0189-6

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Da...Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme. » weiterlesen» einklappen

  • Evaluation
  • Long-term user profiling
  • Multimedia recommendation
  • Semantic web technologies
  • User simulation
  • Video annotation

Autoren


Jose, Joemon M. (Autor)

Verknüpfte Personen