Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Emotional Intensity-based Success Prediction Model for Crowdfunded Campaigns

Information Processing & Management. Bd. 58. H. 1. Elsevier B.V. 2021 102394

Erscheinungsjahr: 2021

Publikationstyp: Zeitschriftenaufsatz

Sprache: Deutsch

Doi/URN: 10.1016/j.ipm.2020.102394

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


We present a novel framework to predict the success of Kickstarter campaigns based on the emotional intensity induced by domain specific aspects. The framework enables to automatically mine (from campaign descriptions and product reviews) clusters of aspects characterizing a domain of interest. A Need Index-based model is built in order to predict whether a campaign will result in success (i.e., reach its funding goal). The easy to interpret Need Index representation enables to understand and...We present a novel framework to predict the success of Kickstarter campaigns based on the emotional intensity induced by domain specific aspects. The framework enables to automatically mine (from campaign descriptions and product reviews) clusters of aspects characterizing a domain of interest. A Need Index-based model is built in order to predict whether a campaign will result in success (i.e., reach its funding goal). The easy to interpret Need Index representation enables to understand and monitor the most relevant domain aspects and their related emotional intensities. We tested our framework on Kickstarter campaigns in the dominant domain of mobile games with a prediction accuracy of 94.4%. The methodology opens new ground for further interdisciplinary research on causal inference to support predictions related to customer needs, particularly in the areas of behavioural economics, marketing, brand management and market research.» weiterlesen» einklappen

Autoren


Faralli, Stefano (Autor)
Rittinghaus, Steve (Autor)
Distante, Damiano (Autor)
Rocha, Eugénio (Autor)

Klassifikation


DDC Sachgruppe:
Informatik

Verknüpfte Personen


Beteiligte Einrichtungen