Starlike dendrimers in solutions: Structural properties and internal dynamics
Journal of Chemical Physics. Bd. 125. H. 20. Melville, NY: American Institute of Physics 2006
Erscheinungsjahr: 2006
ISBN/ISSN: 1089-7690
Publikationstyp: Zeitschriftenaufsatz
Sprache: Englisch
Doi/URN: 10.1063/1.2364895
Geprüft | Bibliothek |
Inhaltszusammenfassung
We measured the shape and the internal dynamics of starlike dendrimers under good solvent conditions with small-angle neutron scattering and neutron spin-echo (NSE) spectroscopy, respectively. Architectural parameters such as the spacer length and generation were varied in a systematic manner. Structural changes occurring in the dendrimers as a function of these parameters are discussed, i.e., in terms of the fractal dimension and deviations of the radius of gyration from the Gaussian ...We measured the shape and the internal dynamics of starlike dendrimers under good solvent conditions with small-angle neutron scattering and neutron spin-echo (NSE) spectroscopy, respectively. Architectural parameters such as the spacer length and generation were varied in a systematic manner. Structural changes occurring in the dendrimers as a function of these parameters are discussed, i.e., in terms of the fractal dimension and deviations of the radius of gyration from the Gaussian value. A first cumulant evaluation of the NSE spectra for each scattering vector q separately yields the length scale dependent relaxation rates. We observe a local minimum in the normalized relaxation rates Omega(q)/q(3) on length scales corresponding to the overall dendrimer dimension. The dynamics is discussed within a Rouse-Zimm approach generalized to the case of starlike dendrimers of arbitrary geometry. The model allows an identification of the modes contributing to the relaxation of the dendrimer in the q and time range of the NSE experiment. The local minimum is due to collective breathing motions of (parts of) the dendrons relative to each other. Shape fluctuations are not observed. (c) 2006 American Institute of Physics. » weiterlesen» einklappen
Autoren
Klassifikation
DDC Sachgruppe:
Allgemeines, Wissenschaft