Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Spatial Prediction in Small Area Estimation

Statistics in Transition new series. Bd. 24. H. 3. 2023 S. 77 - 94

Erscheinungsjahr: 2023

Publikationstyp: Zeitschriftenaufsatz (Forschungsbericht)

Sprache: Englisch

Inhaltszusammenfassung


Small area estimation methods have become a widely used tool to provide accurate estimates for regional indicators such as poverty measures. Recent research has provided evidence that spatial modelling still can improve the precision of regional and local estimates. In this paper, we provide an intrinsic spatial autocorrelation model and prove the propriety of the posterior under a flat prior. F urther, we show using the SAIPE poverty data that the gain in efficiency using a spatial model ca...Small area estimation methods have become a widely used tool to provide accurate estimates for regional indicators such as poverty measures. Recent research has provided evidence that spatial modelling still can improve the precision of regional and local estimates. In this paper, we provide an intrinsic spatial autocorrelation model and prove the propriety of the posterior under a flat prior. F urther, we show using the SAIPE poverty data that the gain in efficiency using a spatial model can be essentially important in the presence of a lack of strong auxiliary variables.» weiterlesen» einklappen

Autoren


Lahiri, Partha (Autor)
Münnich, Ralf (Autor)

Klassifikation


DFG Fachgebiet:
Wirtschaftswissenschaften

DDC Sachgruppe:
Statistik

Verknüpfte Personen


Martin Vogt