Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Calibrated FFT-based density approximations for α -stable distributions

Computational Statistics and Data Analysis. Bd. 50. H. 8. New York, NY: Elsevier 2006 S. 1891 - 1904

Erscheinungsjahr: 2006

ISBN/ISSN: 0167-9473

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1016/j.csda.2005.03.004

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


An algorithm for the approximation of α -stable densities is developed and compared with similar approximation methodologies. The proposed approach employs an adaptive Simpson rule for the quadrature of the Fourier inversion integral and asymptotic Bergström series expansions for the tails of the density. It is guaranteed that the approximation integrates precisely to unity which is helpful for numerical maximum-likelihood routines. The accuracy of the algorithm has been verified with respect...An algorithm for the approximation of α -stable densities is developed and compared with similar approximation methodologies. The proposed approach employs an adaptive Simpson rule for the quadrature of the Fourier inversion integral and asymptotic Bergström series expansions for the tails of the density. It is guaranteed that the approximation integrates precisely to unity which is helpful for numerical maximum-likelihood routines. The accuracy of the algorithm has been verified with respect to the values obtained by Nolan's program STABLE for a grid of parameter values. It is shown that a significant reduction of the computational effort with respect to Nolan's program can be achieved while maintaining a satisfying accuracy.» weiterlesen» einklappen

  • Density approximation
  • Fast Fourier transformation
  • Stable distribution
  • Bergström expansion

Autoren


Menn, Christian (Autor)
Rachev, Svetlozar T. (Autor)

Klassifikation


DFG Fachgebiet:
Wirtschaftswissenschaften

DDC Sachgruppe:
Wirtschaft

Beteiligte Einrichtungen