ΛK femtoscopy in Pb-Pb collisions at sNN√ = 2.76 TeV
arXiv.org (Hrsg). Genf. 2020 32 S. 2005.11124
Erscheinungsjahr: 2020
Publikationstyp: Diverses (Forschungsbericht)
Sprache: Englisch
Geprüft | Bibliothek |
Inhaltszusammenfassung
The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK−, and ΛK0S) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at sNN√ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parame...The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK−, and ΛK0S) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at sNN√ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK+ interaction and attractive in the ΛK− and ΛK0S interactions. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (ss⎯⎯ in ΛK+ and uu⎯⎯⎯ in ΛK−) or from different net strangeness for each system (S = 0 for ΛK+, and S = −2 for ΛK−). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions. » weiterlesen» einklappen
Klassifikation
DDC Sachgruppe:
Physik