Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

An Ascending Vickrey Auction for Selling Bases of a Matroid

OPERATIONS RESEARCH. Bd. 59. H. 2. 2011 S. 400 - 413

Erscheinungsjahr: 2011

ISBN/ISSN: 0030-364X

Publikationstyp: Zeitschriftenaufsatz

Doi/URN: 10.1287/opre.1100.0888

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Consider selling bundles of indivisible goods to buyers with concave utilities that are additively separable in money and goods. We propose an ascending auction for the case when the seller is constrained to sell bundles whose elements form a basis of a matroid. It extends easily to polymatroids. Applications include scheduling, allocation of homogeneous goods, and spatially distributed markets, among others. Our ascending auction induces buyers to bid truthfully and returns the economically ...Consider selling bundles of indivisible goods to buyers with concave utilities that are additively separable in money and goods. We propose an ascending auction for the case when the seller is constrained to sell bundles whose elements form a basis of a matroid. It extends easily to polymatroids. Applications include scheduling, allocation of homogeneous goods, and spatially distributed markets, among others. Our ascending auction induces buyers to bid truthfully and returns the economically efficient basis. Unlike other ascending auctions for this environment, ours runs in pseudopolynomial or polynomial time. Furthermore, we prove the impossibility of an ascending auction for nonmatroidal independence set-systems. » weiterlesen» einklappen

Autoren


Bikhchandani, Sushil (Autor)
Schummer, James (Autor)
Vohra, Rakesh V. (Autor)

Verknüpfte Personen


Sven de Vries

Beteiligte Einrichtungen