Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Does applying quantile mapping to subsamples improve the bias correction of daily precipitation?

International Journal of Climatology. Bd. 38. H. 4. Wiley 2017 S. 1623 - 1633

Erscheinungsjahr: 2017

Publikationstyp: Zeitschriftenaufsatz

Sprache: Deutsch

Doi/URN: 10.1002/joc.5283

Volltext über DOI/URN

Inhaltszusammenfassung


Quantile mapping (QM) is routinely applied in many climate change impact studies for the bias correction (BC) of daily precipitation data. It corrects the complete distribution, but does not correct for errors in the annual cycle. Therefore, QM is often applied separately to temporal subsamples of the data (e.g. each calendar month), which reduces the calibration sample size. The question arises whether this sample size reduction negates the benefit from applying QM to temporal subsamples. We...Quantile mapping (QM) is routinely applied in many climate change impact studies for the bias correction (BC) of daily precipitation data. It corrects the complete distribution, but does not correct for errors in the annual cycle. Therefore, QM is often applied separately to temporal subsamples of the data (e.g. each calendar month), which reduces the calibration sample size. The question arises whether this sample size reduction negates the benefit from applying QM to temporal subsamples. We applied four QM methods in a cross-validation approach to 40 years of daily precipitation data from 10 regional climate model (RCM) hindcast runs, without and with (semi-annual, seasonal, and monthly) subsampling. QM subsampling improved the BC of daily RCM precipitation; less distinct for independent data but considerably for the calibration data. The optimal subsampling timescale for the correction of independent data depended on the chosen QM method and ranged between semi-annual and monthly. Overall, a sub-annual QM improves the forcing for climate change impact studies and thus their reliability.» weiterlesen» einklappen

Autoren


Reiter, Philipp (Autor)
Gutjahr, Oliver (Autor)
Schefczyk, Lukas (Autor)

Klassifikation


DFG Fachgebiet:
Atmosphären-, Meeres- und Klimaforschung

DDC Sachgruppe:
Naturwissenschaften

Verknüpfte Personen