Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Machine learning models for predicting severe COVID-19 outcomes in hospitals

Informatics in Medicine Unlocked. Bd. 37. Amsterdam: Elsevier 2023

Erscheinungsjahr: 2023

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1016/j.imu.2023.101188

Volltext über DOI/URN

Website
GeprüftBibliothek

Inhaltszusammenfassung


The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our machine learning model predicts in-hospital mortality (AUC = 0.918), transfer to ICU (AUC = 0.821) and the need for mechanical ventilation (AUC = 0.654) from a few laboratory data of the first 24 h...The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our machine learning model predicts in-hospital mortality (AUC = 0.918), transfer to ICU (AUC = 0.821) and the need for mechanical ventilation (AUC = 0.654) from a few laboratory data of the first 24 h after admission. Models based on dichotomous features indicating whether a laboratory value exceeds or falls below a threshold perform nearly as good as models based on numerical features. We devise completely data-driven and interpretable machine-learning models for the prediction of in-hospital mortality, transfer to ICU and mechanical ventilation for hospitalized Covid-19 patients within 24 h after admission. Numerical values of. CRP and blood sugar and dichotomous indicators for increased partial thromboplastin time (PTT) and glutamic oxaloacetic transaminase (GOT) are amongst the best predictors.» weiterlesen» einklappen

  • Clinical decision support
  • Covid-19
  • Machine learning
  • Predictive modelling

Autoren


Wendland, Philipp (Autor)
Schmitt, Vanessa (Autor)
Zimmermann, Jörg (Autor)
Häger, Lukas (Autor)
Göpel, Siri (Autor)
Schenkel-Häger, Christof (Autor)
Kschischo, Maik (Autor)

Klassifikation


DFG Fachgebiet:
Informatik

DDC Sachgruppe:
Informatik