Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Listen to the sound of moving sediment in a small gravel-bed river

INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH. Bd. 31. H. 3. 2016 S. 271 - 278

Erscheinungsjahr: 2016

ISBN/ISSN: 1001-6279

Publikationstyp: Zeitschriftenaufsatz

Doi/URN: 10.1016/j.ijsrc.2016.04.003

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


In order to assess the dynamics of rivers, a reliable characterization of bedload transport particularly during unsteady flow regimes is required. In contrast to highly energetic cases in hillslope areas, we aim to answer the question whether the usage of acoustic measurements can improve the characterization of bedload in small rivers draining low land mountains with comparatively low water discharge and bedload. In addition to the investigation of natural flood events, controlled floods wer...In order to assess the dynamics of rivers, a reliable characterization of bedload transport particularly during unsteady flow regimes is required. In contrast to highly energetic cases in hillslope areas, we aim to answer the question whether the usage of acoustic measurements can improve the characterization of bedload in small rivers draining low land mountains with comparatively low water discharge and bedload. In addition to the investigation of natural flood events, controlled floods were generated by releasing water from a reservoir into a small gravel-bed stream. The controlled releases allow for an evaluation of bedload solely from channel storage or bank erosion. For acoustical in-situ characterization of bedload transport, hydrophones were mounted onto the bottom side of steel plates, thus recording the impacts of sediments via the acoustic vibrations on the surface of the plates while at the same time minimizing the disturbing noise resulting from water turbulence. Corresponding bedload traps are removable boxes with open lids fixed in the riverbed so that bedload material registered by the hydrophone is trapped. The acoustic signals correlate well with the quantity of the transported material. During summer flood events the highest transport rates occur at the beginning of the rising limb featuring clockwise hysteresis. This is due to the rising transport energy of the flow and the presence of loose, unconsolidated material. During typical winter flood events bedload shows anticlockwise loops. The intensification of bedload conveyance after the runoff peak can be explained by a decreasing stability of the bed material from the beginning to the end of a transport event. Anticlockwise behavior also results from a combination of bedload exhaustion in the vicinity of the monitoring station with a delayed arrival of new material from distal sources later in the hydrograph. (C) 2016 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved. » weiterlesen» einklappen

Autoren


Krein, Andreas (Autor)
Schenkluhn, Reimar (Autor)
Kurtenbach, Andreas (Autor)
Barriere, Julien (Autor)

Verknüpfte Personen