Recognition of anions by synthetic receptors in aqueous solution
J. Incl. Phenom. Macrocycl. Chem. Bd. 52. H. 3-4. Springer 2005 S. 137 - 187
Erscheinungsjahr: 2005
ISBN/ISSN: 1388-3127; 1573-1111
Publikationstyp: Zeitschriftenaufsatz (Übersichtsartikel)
Sprache: Englisch
Doi/URN: 10.1007/s10847-005-0601-6
Geprüft | Bibliothek |
Inhaltszusammenfassung
Natural anion binding systems achieve high substrate affinity and selectivity most often by arranging converging binding sites inside a cavity or cleft that is well shielded from surrounding solvent molecules by the folded peptide chain. Types of interactions employed for anion recognition are electrostatic interactions, hydrogen-bonding, and coordination to a Lewis-acidic metal center. In this review, successful strategies aimed at the development of synthetic receptors active in water or aq...Natural anion binding systems achieve high substrate affinity and selectivity most often by arranging converging binding sites inside a cavity or cleft that is well shielded from surrounding solvent molecules by the folded peptide chain. Types of interactions employed for anion recognition are electrostatic interactions, hydrogen-bonding, and coordination to a Lewis-acidic metal center. In this review, successful strategies aimed at the development of synthetic receptors active in water or aqueous solvent mixtures are described. It is shown that considerable progress has been made during recent years in the development of potent anion receptors and that for every type of interaction used in nature for anion binding, corresponding synthetic models exist today. Representative examples of these systems are presented with a special emphasis on synthetic receptors whose characterization involved a detailed thermodynamic analysis of complex formation to demonstrate the important interplay between enthalpy and entropy for anion recognition in water.» weiterlesen» einklappen
Klassifikation
DDC Sachgruppe:
Chemie