Multihydroxyl-Functional Polystyrenes in Continuous Flow
Macromolecules. Bd. 43. H. 13. American Chemical Society (ACS) 2010 S. 5582 - 5588
Erscheinungsjahr: 2010
Publikationstyp: Zeitschriftenaufsatz
Sprache: Englisch
Doi/URN: 10.1021/ma902849r
Geprüft | Bibliothek |
Inhaltszusammenfassung
We describe the synthesis of end-functionalized polystyrenes by living anionic polymerization in a microstructured reactor via termination by acetal-protected functional epoxides. Initiation of styrene polymerization by alkyllithium takes place in a micromixing device with efficient heat and mass transfer properties. A newly developed continuous polymerization−termination sequence enabled quantitative functionalization of the living carbanions by nucleophilic displacement with different, spec...We describe the synthesis of end-functionalized polystyrenes by living anionic polymerization in a microstructured reactor via termination by acetal-protected functional epoxides. Initiation of styrene polymerization by alkyllithium takes place in a micromixing device with efficient heat and mass transfer properties. A newly developed continuous polymerization−termination sequence enabled quantitative functionalization of the living carbanions by nucleophilic displacement with different, specifically designed glycidyl ethers (ethoxy ethyl glycidyl ether (EEGE), 1,2-isopropylidene glyceryl glycidyl ether (IGG), and trans-2-phenyl-1,3-dioxane glycidyl ether (PDGE)). Upon acidic hydrolysis the end-capped polystyrenes release multiple hydroxyl groups (2−3) at the chain end. Temperature and flow rates have been varied to control molecular weights and to optimize the reaction conditions for maximum polymerization and termination efficiency. The polymers were analyzed in detail using NMR spectroscopy, size exclusion chromatography (SEC), and MALDI-ToF-MS. Molecular weights of the samples prepared ranged between 1800 and 9000 g/mol. For all of the novel termination agents full termination was confirmed by MALDI-ToF MS. The approach presented is applicable for a large variety of monomers that are polymerizable by carbanionic polymerization.» weiterlesen» einklappen
Autoren
Klassifikation
DDC Sachgruppe:
Allgemeines, Wissenschaft