Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Optimality of Jackson's permutations with respect to limited machine availability

International Transactions in Operational Research. Bd. 13. H. 1. 2006 S. 59 - 74

Erscheinungsjahr: 2006

ISBN/ISSN: 1475-3995

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

GeprüftBibliothek

Inhaltszusammenfassung


This article deals with the scheduling problem of minimizing the makespan in a two-machine job-shop with given w intervals of machine non-availability. It is known that this problem is binary (unary) NP-hard if there is at least one non-availability interval (if the number of non-availability intervals may be arbitrarily large), and all the jobs have the same machine route. We find sufficient conditions when Jackson's pair of permutations remains optimal for the two-machine job-shop problem w...This article deals with the scheduling problem of minimizing the makespan in a two-machine job-shop with given w intervals of machine non-availability. It is known that this problem is binary (unary) NP-hard if there is at least one non-availability interval (if the number of non-availability intervals may be arbitrarily large), and all the jobs have the same machine route. We find sufficient conditions when Jackson's pair of permutations remains optimal for the two-machine job-shop problem with w⩾1 non-availability intervals. Extensive computational studies show the effectiveness (in the number of problems solved) and efficiency (in computational time) of these conditions for the randomly generated instances with up to 10,000 jobs and w⩾5000 non-availability intervals» weiterlesen» einklappen

  • PRODUCTION scheduling
  • MANAGEMENT
  • INDUSTRIAL equipment
  • MACHINERY
  • MATHEMATICS
  • OCCUPATIONS
  • PERMUTATIONS
  • ALGEBRA
  • COMBINATORIAL analysis

Klassifikation


DFG Fachgebiet:
Wirtschaftswissenschaften

DDC Sachgruppe:
Wirtschaft

Verknüpfte Personen


Beteiligte Einrichtungen