Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

The kinetics of thermo-oxidative humic acids degradation studied by isoconversional methods

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY. Bd. 89. H. 3. 2007 S. 957 - 964

Erscheinungsjahr: 2007

ISBN/ISSN: 1388-6150

Publikationstyp: Zeitschriftenaufsatz

Doi/URN: 10.1007/s10973-007-8437-5

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Humic acids represent a complicated mixture of miscellaneous molecules formed as a product of mostly microbial degradation of dead plant tissues and animal bodies. In this work, lignite humic acids were enriched by model compounds and the model-free method suggested by Simon was used to evaluate their stability over the whole range of conversions during the first thermooxidative degradation step. The kinetic parameters obtained were used to predict the stability at 20 and 180 degrees C, respe...Humic acids represent a complicated mixture of miscellaneous molecules formed as a product of mostly microbial degradation of dead plant tissues and animal bodies. In this work, lignite humic acids were enriched by model compounds and the model-free method suggested by Simon was used to evaluate their stability over the whole range of conversions during the first thermooxidative degradation step. The kinetic parameters obtained were used to predict the stability at 20 and 180 degrees C, respectively, which served for the recognition of processes induced by heat and those naturally occurring at lower temperatures. Comparison of the conversion times brought a partial insight into the kinetics and consequently into the role of individual compounds in the thermooxidative degradation/stability of the secondary structure of humic acids. It has been demonstrated that aromatic compounds added to humic acids, except pyridine, increased stability of humic acids and intermediate chars. The same conclusion can be drawn for acetic and palmitic acids. Addition of glucose or ethanol decreased the overall humic stability; however, the char of the former showed the highest stability after 40% of degradation. » weiterlesen» einklappen

Autoren


Valkova, D. (Autor)
Kislinger, J. (Autor)
Pekar, M. (Autor)

Verknüpfte Personen