Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Nondiverging vortex pinning barriers at low current densities across the putative elastic vortex-glass-vortex-liquid transition in YBa2Cu3O7-delta films

Physical review B. Bd. 64. H. 22. 2001 S. 220502-1 - 220502-4

Erscheinungsjahr: 2001

ISBN/ISSN: 1098-0121 ; 1095-3795 ; 1550-235X

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1103/PhysRevB.64.220502

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


A detailed analysis of the electric field?current density (E-J) characteristics of YBa2Cu3O7-? films across the putative thermally induced elastic vortex-glass?vortex-liquid transition predicted by the E(J) curve scaling reveals that the expected increase of the collective pinning barriers with decreasing J is cut off in the low-J region, signaling a dissipation process which involves the plastic deformation of the vortex system. The temperature and magnetic field dependence of the pinning ba...A detailed analysis of the electric field?current density (E-J) characteristics of YBa2Cu3O7-? films across the putative thermally induced elastic vortex-glass?vortex-liquid transition predicted by the E(J) curve scaling reveals that the expected increase of the collective pinning barriers with decreasing J is cut off in the low-J region, signaling a dissipation process which involves the plastic deformation of the vortex system. The temperature and magnetic field dependence of the pinning barriers at low J does not change across the scaling-predicted glass transition line. For the investigated magnetic field range (0.5?7 T), over a relatively large temperature interval, in YBa2Cu3O7-? films there appears a continuous crossover in a pinned plastic vortex assembly, rather than a thermally induced elastic vortex-glass?vortex-liquid transition.» weiterlesen» einklappen

Autoren


Miu, L. (Autor)
Basset, M. (Autor)
Rodriguez, H. (Autor)

Klassifikation


DFG Fachgebiet:
Physik der kondensierten Materie

DDC Sachgruppe:
Physik

Verknüpfte Personen