Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS. Bd. 119. H. 10. 2014 S. 6918 - 6932

Erscheinungsjahr: 2014

ISBN/ISSN: 2169-9275

Publikationstyp: Zeitschriftenaufsatz

Doi/URN: 10.1002/2014JC010303

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a co...Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O-2 flux variability results from deeper sediment O-2 penetration depths and increased O-2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments. » weiterlesen» einklappen

Autoren


McGinnis, Daniel F. (Autor)
Sommer, Stefan (Autor)
Glud, Ronnie N. (Autor)
Linke, Peter (Autor)

Verknüpfte Personen