Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals
ECOLOGICAL APPLICATIONS. Bd. 26. H. 4. 2016 S. 1249 - 1259
Erscheinungsjahr: 2016
ISBN/ISSN: 1051-0761
Publikationstyp: Zeitschriftenaufsatz
Doi/URN: 10.1890/15-0346
Geprüft | Bibliothek |
Inhaltszusammenfassung
Ecological risk assessment depends strongly on species sensitivity data. Typically, sensitivity data are based on laboratory toxicity bioassays, which for practical constraints cannot be exhaustively performed for all species and chemicals available. Bilinear models integrating phylogenetic information of species and physicochemical properties of compounds allow to predict species sensitivity to chemicals. Combining the molecular information (DNA sequences) of 31 invertebrate species with the...Ecological risk assessment depends strongly on species sensitivity data. Typically, sensitivity data are based on laboratory toxicity bioassays, which for practical constraints cannot be exhaustively performed for all species and chemicals available. Bilinear models integrating phylogenetic information of species and physicochemical properties of compounds allow to predict species sensitivity to chemicals. Combining the molecular information (DNA sequences) of 31 invertebrate species with the physicochemical properties of six bivalent metals, we built bilinear models that explained 70-80% of the variability in species sensitivity to heavy metals. Phylogeny was the most important component of the bilinear models, as it explained the major part of the explained variance (>40%). Predicted values from bilinear modeling were in agreement with experimental values (>50%); therefore, this approach is a good starting point to build statistical models which can potentially predict heavy metal toxicity for untested invertebrate species based on empirical values for similar species. Despite their good performance, development of the presented bilinear models would benefit from improved phylogenetic and toxicological datasets. Our analysis is an example for linking evolutionary biology with applied ecotoxicology. Its future applications may encompass other stress factors or traits influencing the survival of aquatic organisms in polluted environments. » weiterlesen» einklappen