Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites
Remote Sensing. Bd. 7. H. 5. MDPI AG 2015 S. 5042 - 5056
Erscheinungsjahr: 2015
Publikationstyp: Zeitschriftenaufsatz
Sprache: Englisch
Doi/URN: 10.3390/rs70505042
Inhaltszusammenfassung
The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS). Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composite...The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS). Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composites for a long period of time. These approaches are well suited for static-nature, slow changing surface features (e.g., fast-ice extent). However, this is not applicable to fast-changing features, like sea-ice polynyas. Therefore, we developed a spatial feature reconstruction to derive information for cloud-covered sea-ice areas based on the surrounding days weighted directly proportional with their temporal proximity to the initial day of interest. Its performance is tested based on manually-screened and artificially cloud-covered case studies of MODIS-derived polynya area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are able to completely restore the artificially cloud-covered test areas with a spatial correlation of 0.83 and a mean absolute spatial deviation of 21%.» weiterlesen» einklappen
Autoren
Klassifikation
DFG Fachgebiet:
Atmosphären-, Meeres- und Klimaforschung
DDC Sachgruppe:
Naturwissenschaften
Verknüpfte Personen
- Günther Heinemann
- Mitarbeiter/in
(Geowissenschaften - Umweltmeteorologie)
- Sascha Willmes
- Mitarbeiter/in
(FB VI - Raum- und Umweltwissenschaften)